Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Joint Face Super-Resolution and Deblurring Using a Generative Adversarial Network (1912.10427v1)

Published 22 Dec 2019 in cs.CV

Abstract: Facial image super-resolution (SR) is an important preprocessing for facial image analysis, face recognition, and image-based 3D face reconstruction. Recent convolutional neural network (CNN) based method has shown excellent performance by learning mapping relation using pairs of low-resolution (LR) and high-resolution (HR) facial images. However, since the HR facial image reconstruction using CNN is conventionally aimed to increase the PSNR and SSIM metrics, the reconstructed HR image might not be realistic even with high scores. An adversarial framework is proposed in this study to reconstruct the HR facial image by simultaneously generating an HR image with and without blur. First, the spatial resolution of the LR facial image is increased by eight times using a five-layer CNN. Then, the encoder extracts the features of the up-scaled image. These features are finally sent to two branches (decoders) to generate an HR facial image with and without blur. In addition, local and global discriminators are combined to focus on the reconstruction of HR facial structures. Experiment results show that the proposed algorithm generates a realistic HR facial image. Furthermore, the proposed method can generate a variety of different facial images.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.