Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

\emph{cm}SalGAN: RGB-D Salient Object Detection with Cross-View Generative Adversarial Networks (1912.10280v2)

Published 21 Dec 2019 in cs.CV

Abstract: Image salient object detection (SOD) is an active research topic in computer vision and multimedia area. Fusing complementary information of RGB and depth has been demonstrated to be effective for image salient object detection which is known as RGB-D salient object detection problem. The main challenge for RGB-D salient object detection is how to exploit the salient cues of both intra-modality (RGB, depth) and cross-modality simultaneously which is known as cross-modality detection problem. In this paper, we tackle this challenge by designing a novel cross-modality Saliency Generative Adversarial Network (\emph{cm}SalGAN). \emph{cm}SalGAN aims to learn an optimal view-invariant and consistent pixel-level representation for RGB and depth images via a novel adversarial learning framework, which thus incorporates both information of intra-view and correlation information of cross-view images simultaneously for RGB-D saliency detection problem. To further improve the detection results, the attention mechanism and edge detection module are also incorporated into \emph{cm}SalGAN. The entire \emph{cm}SalGAN can be trained in an end-to-end manner by using the standard deep neural network framework. Experimental results show that \emph{cm}SalGAN achieves the new state-of-the-art RGB-D saliency detection performance on several benchmark datasets.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.