Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A Comparison of Architectures and Pretraining Methods for Contextualized Multilingual Word Embeddings (1912.10169v1)

Published 15 Dec 2019 in cs.CL

Abstract: The lack of annotated data in many languages is a well-known challenge within the field of multilingual NLP. Therefore, many recent studies focus on zero-shot transfer learning and joint training across languages to overcome data scarcity for low-resource languages. In this work we (i) perform a comprehensive comparison of state-ofthe-art multilingual word and sentence encoders on the tasks of named entity recognition (NER) and part of speech (POS) tagging; and (ii) propose a new method for creating multilingual contextualized word embeddings, compare it to multiple baselines and show that it performs at or above state-of-theart level in zero-shot transfer settings. Finally, we show that our method allows for better knowledge sharing across languages in a joint training setting.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.