Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions (1912.10150v1)

Published 21 Dec 2019 in cs.CV

Abstract: Human-motion generation is a long-standing challenging task due to the requirement of accurately modeling complex and diverse dynamic patterns. Most existing methods adopt sequence models such as RNN to directly model transitions in the original action space. Due to high dimensionality and potential noise, such modeling of action transitions is particularly challenging. In this paper, we focus on skeleton-based action generation and propose to model smooth and diverse transitions on a latent space of action sequences with much lower dimensionality. Conditioned on a latent sequence, actions are generated by a frame-wise decoder shared by all latent action-poses. Specifically, an implicit RNN is defined to model smooth latent sequences, whose randomness (diversity) is controlled by noise from the input. Different from standard action-prediction methods, our model can generate action sequences from pure noise without any conditional action poses. Remarkably, it can also generate unseen actions from mixed classes during training. Our model is learned with a bi-directional generative-adversarial-net framework, which not only can generate diverse action sequences of a particular class or mix classes, but also learns to classify action sequences within the same model. Experimental results show the superiority of our method in both diverse action-sequence generation and classification, relative to existing methods.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.