Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets (1912.10087v1)

Published 20 Dec 2019 in cs.LG, cs.CV, and stat.ML

Abstract: The implementation of Deep Convolutional Neural Networks (ConvNets) on tiny end-nodes with limited non-volatile memory space calls for smart compression strategies capable of shrinking the footprint yet preserving predictive accuracy. There exist a number of strategies for this purpose, from those that play with the topology of the model or the arithmetic precision, e.g. pruning and quantization, to those that operate a model agnostic compression, e.g. weight encoding. The tighter the memory constraint, the higher the probability that these techniques alone cannot meet the requirement, hence more awareness and cooperation across different optimizations become mandatory. This work addresses the issue by introducing EAST, Encoding-Aware Sparse Training, a novel memory-constrained training procedure that leads quantized ConvNets towards deep memory compression. EAST implements an adaptive group pruning designed to maximize the compression rate of the weight encoding scheme (the LZ4 algorithm in this work). If compared to existing methods, EAST meets the memory constraint with lower sparsity, hence ensuring higher accuracy. Results conducted on a state-of-the-art ConvNet (ResNet-9) deployed on a low-power microcontroller (ARM Cortex-M4) validate the proposal.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.