Papers
Topics
Authors
Recent
2000 character limit reached

Identity Document to Selfie Face Matching Across Adolescence (1912.10021v1)

Published 20 Dec 2019 in cs.CV

Abstract: Matching live images (``selfies'') to images from ID documents is a problem that can arise in various applications. A challenging instance of the problem arises when the face image on the ID document is from early adolescence and the live image is from later adolescence. We explore this problem using a private dataset called Chilean Young Adult (CHIYA) dataset, where we match live face images taken at age 18-19 to face images on ID documents created at ages 9 to 18. State-of-the-art deep learning face matchers (e.g., ArcFace) have relatively poor accuracy for document-to-selfie face matching. To achieve higher accuracy, we fine-tune the best available open-source model with triplet loss for a few-shot learning. Experiments show that our approach achieves higher accuracy than the DocFace+ model recently developed for this problem. Our fine-tuned model was able to improve the true acceptance rate for the most difficult (largest age span) subset from 62.92% to 96.67% at a false acceptance rate of 0.01%. Our fine-tuned model is available for use by other researchers.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.