Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Second-order Information in First-order Optimization Methods (1912.09926v1)

Published 20 Dec 2019 in cs.LG, math.OC, and stat.ML

Abstract: In this paper, we try to uncover the second-order essence of several first-order optimization methods. For Nesterov Accelerated Gradient, we rigorously prove that the algorithm makes use of the difference between past and current gradients, thus approximates the Hessian and accelerates the training. For adaptive methods, we related Adam and Adagrad to a powerful technique in computation statistics---Natural Gradient Descent. These adaptive methods can in fact be treated as relaxations of NGD with only a slight difference lying in the square root of the denominator in the update rules. Skeptical about the effect of such difference, we design a new algorithm---AdaSqrt, which removes the square root in the denominator and scales the learning rate by sqrt(T). Surprisingly, our new algorithm is comparable to various first-order methods(such as SGD and Adam) on MNIST and even beats Adam on CIFAR-10! This phenomenon casts doubt on the convention view that the square root is crucial and training without it will lead to terrible performance. As far as we have concerned, so long as the algorithm tries to explore second or even higher information of the loss surface, then proper scaling of the learning rate alone will guarantee fast training and good generalization performance. To the best of our knowledge, this is the first paper that seriously considers the necessity of square root among all adaptive methods. We believe that our work can shed light on the importance of higher-order information and inspire the design of more powerful algorithms in the future.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.