Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Solving Equation Systems in $ω$-categorical Algebras (1912.09815v2)

Published 20 Dec 2019 in math.LO, cs.CC, and math.RA

Abstract: We study the computational complexity of deciding whether a given set of term equalities and inequalities has a solution in an $\omega$-categorical algebra $\mathfrak{A}$. There are $\omega$-categorical groups where this problem is undecidable. We show that if $\mathfrak{A}$ is an $\omega$-categorical semilattice or an abelian group, then the problem is in P or NP-hard. The hard cases are precisely those where Pol$(\mathfrak{A},\neq)$ has a uniformly continuous minor-preserving map to the clone of projections on a two-element set. The results provide information about algebras $\mathfrak{A}$ such that Pol$(\mathfrak{A},\neq)$ does not satisfy this condition, and they are of independent interest in universal algebra. In our proofs we rely on the Barto-Pinsker theorem about the existence of pseudo-Siggers polymorphisms. To the best of our knowledge, this is the first time that the pseudo-Siggers identity has been used to prove a complexity dichotomy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.