Papers
Topics
Authors
Recent
2000 character limit reached

Solving Equation Systems in $ω$-categorical Algebras (1912.09815v2)

Published 20 Dec 2019 in math.LO, cs.CC, and math.RA

Abstract: We study the computational complexity of deciding whether a given set of term equalities and inequalities has a solution in an $\omega$-categorical algebra $\mathfrak{A}$. There are $\omega$-categorical groups where this problem is undecidable. We show that if $\mathfrak{A}$ is an $\omega$-categorical semilattice or an abelian group, then the problem is in P or NP-hard. The hard cases are precisely those where Pol$(\mathfrak{A},\neq)$ has a uniformly continuous minor-preserving map to the clone of projections on a two-element set. The results provide information about algebras $\mathfrak{A}$ such that Pol$(\mathfrak{A},\neq)$ does not satisfy this condition, and they are of independent interest in universal algebra. In our proofs we rely on the Barto-Pinsker theorem about the existence of pseudo-Siggers polymorphisms. To the best of our knowledge, this is the first time that the pseudo-Siggers identity has been used to prove a complexity dichotomy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.