Solving Equation Systems in $ω$-categorical Algebras (1912.09815v2)
Abstract: We study the computational complexity of deciding whether a given set of term equalities and inequalities has a solution in an $\omega$-categorical algebra $\mathfrak{A}$. There are $\omega$-categorical groups where this problem is undecidable. We show that if $\mathfrak{A}$ is an $\omega$-categorical semilattice or an abelian group, then the problem is in P or NP-hard. The hard cases are precisely those where Pol$(\mathfrak{A},\neq)$ has a uniformly continuous minor-preserving map to the clone of projections on a two-element set. The results provide information about algebras $\mathfrak{A}$ such that Pol$(\mathfrak{A},\neq)$ does not satisfy this condition, and they are of independent interest in universal algebra. In our proofs we rely on the Barto-Pinsker theorem about the existence of pseudo-Siggers polymorphisms. To the best of our knowledge, this is the first time that the pseudo-Siggers identity has been used to prove a complexity dichotomy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.