Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformation of Turing Machines into Context-Dependent Fusion Grammars (1912.09608v1)

Published 20 Dec 2019 in cs.FL

Abstract: Context-dependent fusion grammars were recently introduced as devices for the generation of hypergraph languages. In this paper, we show that this new type of hypergraph grammars, where the application of fusion rules is restricted by positive and negative context conditions, is a universal computation model. Our main result is that Turing machines can be transformed into these grammars such that the recognized language of the Turing machine and the generated language of the corresponding context-dependent fusion grammar coincide up to representation of strings as graphs. As a corollary we get that context-dependent fusion grammars can generate all recursively enumerable string languages.

Citations (4)

Summary

We haven't generated a summary for this paper yet.