Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Geometric Considerations of a Good Dictionary for Koopman Analysis of Dynamical Systems: Cardinality, 'Primary Eigenfunction,' and Efficient Representation (1912.09570v4)

Published 18 Dec 2019 in math.DS and cs.LG

Abstract: Representation of a dynamical system in terms of simplifying modes is a central premise of reduced order modelling and a primary concern of the increasingly popular DMD (dynamic mode decomposition) empirical interpretation of Koopman operator analysis of complex systems. In the spirit of optimal approximation and reduced order modelling the goal of DMD methods and variants are to describe the dynamical evolution as a linear evolution in an appropriately transformed lower rank space, as best as possible. That Koopman eigenfunctions follow a linear PDE that is solvable by the method of characteristics yields several interesting relationships between geometric and algebraic properties. Corresponding to freedom to arbitrarily define functions on a data surface, for each eigenvalue, there are infinitely many eigenfunctions emanating along characteristics. We focus on contrasting cardinality and equivalence. In particular, we introduce an equivalence class, "primary eigenfunctions," consisting of those eigenfunctions with identical sets of level sets, that helps contrast algebraic multiplicity from other geometric aspects. Popularly, Koopman methods and notably dynamic mode decomposition (DMD) and variants, allow data-driven study of how measurable functions evolve along orbits. As far as we know, there has not been an in depth study regarding the underlying geometry as related to an efficient representation. We present a construction that leads to functions on the data surface whose corresponding eigenfunctions are efficient in a least squares sense. We call this construction optimal Koopman eigenfunction DMD, (oKEEDMD), and we highlight with examples.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)