Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-Agent Deep Reinforcement Learning based Spectrum Allocation for D2D Underlay Communications (1912.09302v1)

Published 18 Dec 2019 in cs.NI

Abstract: Device-to-device (D2D) communication underlay cellular networks is a promising technique to improve spectrum efficiency. In this situation, D2D transmission may cause severe interference to both the cellular and other D2D links, which imposes a great technical challenge to spectrum allocation. Existing centralized schemes require global information, which causes a large signaling overhead. While existing distributed schemes requires frequent information exchange among D2D users and cannot achieve global optimization. In this paper, a distributed spectrum allocation framework based on multi-agent deep reinforcement learning is proposed, named multi-agent actor critic (MAAC). MAAC shares global historical states, actions and policies during centralized training, requires no signal interaction during execution and utilizes cooperation among users to further optimize system performance. Moreover, in order to decrease the computing complexity of the training, we further propose the neighbor-agent actor critic (NAAC) based on the neighbor users' historical information for centralized training. The simulation results show that the proposed MAAC and NAAC can effectively reduce the outage probability of cellular links, greatly improve the sum rate of D2D links and converge quickly.

Citations (98)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)