Papers
Topics
Authors
Recent
2000 character limit reached

Towards automated mobile-phone-based plant pathology management (1912.09239v2)

Published 19 Dec 2019 in cs.CV

Abstract: This paper presents a framework which uses computer vision algorithms to standardise images and analyse them for identifying crop diseases automatically. The tools are created to bridge the information gap between farmers, advisory call centres and agricultural experts using the images of diseased/infected crop captured by mobile-phones. These images are generally sensitive to a number of factors including camera type and lighting. We therefore propose a technique for standardising the colour of plant images within the context of the advisory system. Subsequently, to aid the advisory process, the disease recognition process is automated using image processing in conjunction with machine learning techniques. We describe our proposed leaf extraction, affected area segmentation and disease classification techniques. The proposed disease recognition system is tested using six mango diseases and the results show over 80% accuracy. The final output of our system is a list of possible diseases with relevant management advice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.