Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning Shared Cross-modality Representation Using Multispectral-LiDAR and Hyperspectral Data (1912.08837v2)

Published 18 Dec 2019 in cs.CV

Abstract: Due to the ever-growing diversity of the data source, multi-modality feature learning has attracted more and more attention. However, most of these methods are designed by jointly learning feature representation from multi-modalities that exist in both training and test sets, yet they are less investigated in absence of certain modality in the test phase. To this end, in this letter, we propose to learn a shared feature space across multi-modalities in the training process. By this way, the out-of-sample from any of multi-modalities can be directly projected onto the learned space for a more effective cross-modality representation. More significantly, the shared space is regarded as a latent subspace in our proposed method, which connects the original multi-modal samples with label information to further improve the feature discrimination. Experiments are conducted on the multispectral-Lidar and hyperspectral dataset provided by the 2018 IEEE GRSS Data Fusion Contest to demonstrate the effectiveness and superiority of the proposed method in comparison with several popular baselines.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube