Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Forecasting significant stock price changes using neural networks (1912.08791v1)

Published 21 Nov 2019 in q-fin.TR, cs.LG, and stat.ML

Abstract: Stock price prediction is a rich research topic that has attracted interest from various areas of science. The recent success of machine learning in speech and image recognition has prompted researchers to apply these methods to asset price prediction. The majority of literature has been devoted to predicting either the actual asset price or the direction of price movement. In this paper, we study a hitherto little explored question of predicting significant changes in stock price based on previous changes using machine learning algorithms. We are particularly interested in the performance of neural network classifiers in the given context. To this end, we construct and test three neural network models including multi-layer perceptron, convolutional net, and long short term memory net. As benchmark models we use random forest and relative strength index methods. The models are tested using 10-year daily stock price data of four major US public companies. Test results show that predicting significant changes in stock price can be accomplished with a high degree of accuracy. In particular, we obtain substantially better results than similar studies that forecast the direction of price change.

Citations (74)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)