Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generalized Residual Ratio Thresholding (1912.08637v2)

Published 18 Dec 2019 in stat.ML, cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Simultaneous orthogonal matching pursuit (SOMP) and block OMP (BOMP) are two widely used techniques for sparse support recovery in multiple measurement vector (MMV) and block sparse (BS) models respectively. For optimal performance, both SOMP and BOMP require \textit{a priori} knowledge of signal sparsity or noise variance. However, sparsity and noise variance are unavailable in most practical applications. This letter presents a novel technique called generalized residual ratio thresholding (GRRT) for operating SOMP and BOMP without the \textit{a priori} knowledge of signal sparsity and noise variance and derive finite sample and finite signal to noise ratio (SNR) guarantees for exact support recovery. Numerical simulations indicate that GRRT performs similar to BOMP and SOMP with \textit{a priori} knowledge of signal and noise statistics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.