Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Change Detection in Multi-temporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network (1912.08628v1)

Published 18 Dec 2019 in eess.IV and cs.CV

Abstract: With the development of Earth observation technology, very-high-resolution (VHR) image has become an important data source of change detection. Nowadays, deep learning methods have achieved conspicuous performance in the change detection of VHR images. Nonetheless, most of the existing change detection models based on deep learning require annotated training samples. In this paper, a novel unsupervised model called kernel principal component analysis (KPCA) convolution is proposed for extracting representative features from multi-temporal VHR images. Based on the KPCA convolution, an unsupervised deep siamese KPCA convolutional mapping network (KPCA-MNet) is designed for binary and multi-class change detection. In the KPCA-MNet, the high-level spatial-spectral feature maps are extracted by a deep siamese network consisting of weight-shared PCA convolution layers. Then, the change information in the feature difference map is mapped into a 2-D polar domain. Finally, the change detection results are generated by threshold segmentation and clustering algorithms. All procedures of KPCA-MNet does not require labeled data. The theoretical analysis and experimental results demonstrate the validity, robustness, and potential of the proposed method in two binary change detection data sets and one multi-class change detection data set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chen Wu (169 papers)
  2. Hongruixuan Chen (30 papers)
  3. Bo Do (2 papers)
  4. Liangpei Zhang (113 papers)
Citations (103)

Summary

We haven't generated a summary for this paper yet.