Papers
Topics
Authors
Recent
2000 character limit reached

ActiveMoCap: Optimized Viewpoint Selection for Active Human Motion Capture (1912.08568v2)

Published 18 Dec 2019 in cs.CV and cs.RO

Abstract: The accuracy of monocular 3D human pose estimation depends on the viewpoint from which the image is captured. While freely moving cameras, such as on drones, provide control over this viewpoint, automatically positioning them at the location which will yield the highest accuracy remains an open problem. This is the problem that we address in this paper. Specifically, given a short video sequence, we introduce an algorithm that predicts which viewpoints should be chosen to capture future frames so as to maximize 3D human pose estimation accuracy. The key idea underlying our approach is a method to estimate the uncertainty of the 3D body pose estimates. We integrate several sources of uncertainty, originating from deep learning based regressors and temporal smoothness. Our motion planner yields improved 3D body pose estimates and outperforms or matches existing ones that are based on person following and orbiting.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.