Tree pyramidal adaptive importance sampling (1912.08434v2)
Abstract: This paper introduces Tree-Pyramidal Adaptive Importance Sampling (TP-AIS), a novel iterated sampling method that outperforms state-of-the-art approaches like deterministic mixture population Monte Carlo (DM-PMC), mixture population Monte Carlo (M-PMC) and layered adaptive importance sampling (LAIS). TP-AIS iteratively builds a proposal distribution parameterized by a tree pyramid, where each tree leaf spans a subspace that represents its importance density. After each new sample operation, a set of tree leaves are subdivided for improving the approximation of the proposal distribution to the target density. Unlike the rest of the methods in the literature, TP-AIS is parameter free and requires no tuning to achieve its best performance. We evaluate TP-AIS with different complexity randomized target probability density functions (PDF) and also analyze its application to different dimensions. The results are compared to state-of-the-art iterative importance sampling approaches and other baseline MCMC approaches using Normalized Effective Sample Size (N-ESS), Jensen-Shannon Divergence, and time complexity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.