Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tree pyramidal adaptive importance sampling (1912.08434v2)

Published 18 Dec 2019 in stat.ML, cs.LG, and stat.CO

Abstract: This paper introduces Tree-Pyramidal Adaptive Importance Sampling (TP-AIS), a novel iterated sampling method that outperforms state-of-the-art approaches like deterministic mixture population Monte Carlo (DM-PMC), mixture population Monte Carlo (M-PMC) and layered adaptive importance sampling (LAIS). TP-AIS iteratively builds a proposal distribution parameterized by a tree pyramid, where each tree leaf spans a subspace that represents its importance density. After each new sample operation, a set of tree leaves are subdivided for improving the approximation of the proposal distribution to the target density. Unlike the rest of the methods in the literature, TP-AIS is parameter free and requires no tuning to achieve its best performance. We evaluate TP-AIS with different complexity randomized target probability density functions (PDF) and also analyze its application to different dimensions. The results are compared to state-of-the-art iterative importance sampling approaches and other baseline MCMC approaches using Normalized Effective Sample Size (N-ESS), Jensen-Shannon Divergence, and time complexity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.