Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Collective Entity Alignment via Adaptive Features (1912.08404v3)

Published 18 Dec 2019 in cs.AI, cs.CL, and cs.LG

Abstract: Entity alignment (EA) identifies entities that refer to the same real-world object but locate in different knowledge graphs (KGs), and has been harnessed for KG construction and integration. When generating EA results, current solutions treat entities independently and fail to take into account the interdependence between entities. To fill this gap, we propose a collective EA framework. We first employ three representative features, i.e., structural, semantic and string signals, which are adapted to capture different aspects of the similarity between entities in heterogeneous KGs. In order to make collective EA decisions, we formulate EA as the classical stable matching problem, which is further effectively solved by deferred acceptance algorithm. Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks against state-of-the-art solutions, and the empirical results verify its effectiveness and superiority.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.