Papers
Topics
Authors
Recent
2000 character limit reached

Collective Entity Alignment via Adaptive Features (1912.08404v3)

Published 18 Dec 2019 in cs.AI, cs.CL, and cs.LG

Abstract: Entity alignment (EA) identifies entities that refer to the same real-world object but locate in different knowledge graphs (KGs), and has been harnessed for KG construction and integration. When generating EA results, current solutions treat entities independently and fail to take into account the interdependence between entities. To fill this gap, we propose a collective EA framework. We first employ three representative features, i.e., structural, semantic and string signals, which are adapted to capture different aspects of the similarity between entities in heterogeneous KGs. In order to make collective EA decisions, we formulate EA as the classical stable matching problem, which is further effectively solved by deferred acceptance algorithm. Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks against state-of-the-art solutions, and the empirical results verify its effectiveness and superiority.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.