Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Chinese Named Entity Recognition Augmented with Lexicon Memory (1912.08282v2)

Published 17 Dec 2019 in cs.CL

Abstract: Inspired by a concept of content-addressable retrieval from cognitive science, we propose a novel fragment-based model augmented with a lexicon-based memory for Chinese NER, in which both the character-level and word-level features are combined to generate better feature representations for possible name candidates. It is observed that locating the boundary information of entity names is useful in order to classify them into pre-defined categories. Position-dependent features, including prefix and suffix are introduced for NER in the form of distributed representation. The lexicon-based memory is used to help generate such position-dependent features and deal with the problem of out-of-vocabulary words. Experimental results showed that the proposed model, called LEMON, achieved state-of-the-art on four datasets.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.