Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

When Your Robot Breaks: Active Learning During Plant Failure (1912.08116v1)

Published 17 Dec 2019 in cs.RO and cs.NE

Abstract: Detecting and adapting to catastrophic failures in robotic systems requires a robot to learn its new dynamics quickly and safely to best accomplish its goals. To address this challenging problem, we propose probabilistically-safe, online learning techniques to infer the altered dynamics of a robot at the moment a failure (e.g., physical damage) occurs. We combine model predictive control and active learning within a chance-constrained optimization framework to safely and efficiently learn the new plant model of the robot. We leverage a neural network for function approximation in learning the latent dynamics of the robot under failure conditions. Our framework generalizes to various damage conditions while being computationally light-weight to advance real-time deployment. We empirically validate within a virtual environment that we can regain control of a severely damaged aircraft in seconds and require only 0.1 seconds to find safe, information-rich trajectories, outperforming state-of-the-art approaches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.