A Context-Aware Approach for Detecting Check-Worthy Claims in Political Debates (1912.08084v1)
Abstract: In the context of investigative journalism, we address the problem of automatically identifying which claims in a given document are most worthy and should be prioritized for fact-checking. Despite its importance, this is a relatively understudied problem. Thus, we create a new dataset of political debates, containing statements that have been fact-checked by nine reputable sources, and we train machine learning models to predict which claims should be prioritized for fact-checking, i.e., we model the problem as a ranking task. Unlike previous work, which has looked primarily at sentences in isolation, in this paper we focus on a rich input representation modeling the context: relationship between the target statement and the larger context of the debate, interaction between the opponents, and reaction by the moderator and by the public. Our experiments show state-of-the-art results, outperforming a strong rivaling system by a margin, while also confirming the importance of the contextual information.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.