Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Freeway network design with exclusive lanes for automated vehicles under endogenous mobility demand (1912.07746v3)

Published 16 Dec 2019 in math.OC and cs.DM

Abstract: Automated vehicles (AV) have the potential to provide cost-effective mobility options along with overall system-level benefits in terms of congestion and vehicular emissions. Additional resource allocation at the network level, such as AV-exclusive lanes, can further foster the usage of AVs rendering this mode of travel more attractive than legacy vehicles (LV). However, it is necessary to find the crucial locations in the network where providing these dedicated lanes would reap the maximum benefits. In this study, we propose an integrated mixed-integer programming framework for optimal AV-exclusive lane design on freeway networks which accounts for commuters' demand split among AVs and LVs via a logit model incorporating class-based utilities. We incorporate the link transmission model (LTM) as the underlying traffic flow model due to its computational efficiency for system optimum dynamic traffic assignment. The LTM is modified to integrate two vehicle classes namely, LVs and AVs with a lane-based approach. The presence of binary variables to represent lane design and the logit model for endogenous demand estimation results in a nonconvex mixed-integer nonlinear program (MINLP) formulation. We propose a Benders' decomposition approach to tackle this challenging optimization problem. Our approach iteratively explores possible lane designs in the Benders' master problem and, at each iteration, solves a sequence of system-optimum dynamic traffic assignment (SODTA) problems which is shown to converge to fixed-points representative of logit-compatible demand splits. Further, we prove that the proposed solution method converges to a local optima of the nonconvex problem and identify under which conditions this local optima is a global solution. The proposed approach is implemented on three hypothetical freeway networks with single and multiple origins and destinations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.