Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Infinite families of $2$-designs from a class of linear codes related to Dembowski-Ostrom functions (1912.07531v1)

Published 13 Dec 2019 in math.CO, cs.IT, and math.IT

Abstract: Due to their important applications to coding theory, cryptography, communications and statistics, combinatorial $t$-designs have been attracted lots of research interest for decades. The interplay between coding theory and $t$-designs has on going for many years. As we all known, $t$-designs can be used to derive linear codes over any finite field, as well as the supports of all codewords with a fixed weight in a code also may hold a $t$-design. In this paper, we first construct a class of linear codes from cyclic codes related to Dembowski-Ostrom functions. By using exponential sums, we then determine the weight distribution of the linear codes. Finally, we obtain infinite families of $2$-designs from the supports of all codewords with a fixed weight in these codes. Furthermore, the parameters of $2$-designs are calculated explicitly.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.