Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Semantic Similarity To Improve Question Understanding in a Virtual Patient (1912.07421v1)

Published 16 Dec 2019 in cs.CL, cs.AI, and cs.CY

Abstract: In medicine, a communicating virtual patient or doctor allows students to train in medical diagnosis and develop skills to conduct a medical consultation. In this paper, we describe a conversational virtual standardized patient system to allow medical students to simulate a diagnosis strategy of an abdominal surgical emergency. We exploited the semantic properties captured by distributed word representations to search for similar questions in the virtual patient dialogue system. We created two dialogue systems that were evaluated on datasets collected during tests with students. The first system based on hand-crafted rules obtains $92.29\%$ as $F1$-score on the studied clinical case while the second system that combines rules and semantic similarity achieves $94.88\%$. It represents an error reduction of $9.70\%$ as compared to the rules-only-based system.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.