Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Error-Tolerant Quantized Neural Network Accelerators (1912.07394v1)

Published 16 Dec 2019 in eess.SP, cs.CV, and cs.LG

Abstract: Neural Networks are currently one of the most widely deployed machine learning algorithms. In particular, Convolutional Neural Networks (CNNs), are gaining popularity and are evaluated for deployment in safety critical applications such as self driving vehicles. Modern CNNs feature enormous memory bandwidth and high computational needs, challenging existing hardware platforms to meet throughput, latency and power requirements. Functional safety and error tolerance need to be considered as additional requirement in safety critical systems. In general, fault tolerant operation can be achieved by adding redundancy to the system, which is further exacerbating the computational demands. Furthermore, the question arises whether pruning and quantization methods for performance scaling turn out to be counterproductive with regards to fail safety requirements. In this work we present a methodology to evaluate the impact of permanent faults affecting Quantized Neural Networks (QNNs) and how to effectively decrease their effects in hardware accelerators. We use FPGA-based hardware accelerated error injection, in order to enable the fast evaluation. A detailed analysis is presented showing that QNNs containing convolutional layers are by far not as robust to faults as commonly believed and can lead to accuracy drops of up to 10%. To circumvent that, we propose two different methods to increase their robustness: 1) selective channel replication which adds significantly less redundancy than used by the common triple modular redundancy and 2) a fault-aware scheduling of processing elements for folded implementations

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.