Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mimetics: Towards Understanding Human Actions Out of Context (1912.07249v3)

Published 16 Dec 2019 in cs.CV

Abstract: Recent methods for video action recognition have reached outstanding performances on existing benchmarks. However, they tend to leverage context such as scenes or objects instead of focusing on understanding the human action itself. For instance, a tennis field leads to the prediction playing tennis irrespectively of the actions performed in the video. In contrast, humans have a more complete understanding of actions and can recognize them without context. The best example of out-of-context actions are mimes, that people can typically recognize despite missing relevant objects and scenes. In this paper, we propose to benchmark action recognition methods in such absence of context and introduce a novel dataset, Mimetics, consisting of mimed actions for a subset of 50 classes from the Kinetics benchmark. Our experiments show that (a) state-of-the-art 3D convolutional neural networks obtain disappointing results on such videos, highlighting the lack of true understanding of the human actions and (b) models leveraging body language via human pose are less prone to context biases. In particular, we show that applying a shallow neural network with a single temporal convolution over body pose features transferred to the action recognition problem performs surprisingly well compared to 3D action recognition methods.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.