Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Drawbacks and Proposed Solutions for Real-time Processing on Existing State-of-the-art Locality Sensitive Hashing Techniques (1912.07091v1)

Published 15 Dec 2019 in cs.DB

Abstract: Nearest-neighbor query processing is a fundamental operation for many image retrieval applications. Often, images are stored and represented by high-dimensional vectors that are generated by feature-extraction algorithms. Since tree-based index structures are shown to be ineffective for high dimensional processing due to the well-known "Curse of Dimensionality", approximate nearest neighbor techniques are used for faster query processing. Locality Sensitive Hashing (LSH) is a very popular and efficient approximate nearest neighbor technique that is known for its sublinear query processing complexity and theoretical guarantees. Nowadays, with the emergence of technology, several diverse application domains require real-time high-dimensional data storing and processing capacity. Existing LSH techniques are not suitable to handle real-time data and queries. In this paper, we discuss the challenges and drawbacks of existing LSH techniques for processing real-time high-dimensional image data. Additionally, through experimental analysis, we propose improvements for existing state-of-the-art LSH techniques for efficient processing of high-dimensional image data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube