Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems (1912.07084v2)

Published 15 Dec 2019 in eess.SY and cs.SY

Abstract: The decision logic for the ACAS X family of aircraft collision avoidance systems is represented as a large numeric table. Due to storage constraints of certified avionics hardware, neural networks have been suggested as a way to significantly compress the data while still preserving performance in terms of safety. However, neural networks are complex continuous functions with outputs that are difficult to predict. Because simulations evaluate only a finite number of encounters, simulations are not sufficient to guarantee that the neural network will perform correctly in all possible situations. We propose a method to provide safety guarantees when using a neural network collision avoidance system. The neural network outputs are bounded using neural network verification tools like Reluplex and Reluval, and a reachability method determines all possible ways aircraft encounters will resolve using neural network advisories and assuming bounded aircraft dynamics. Experiments with systems inspired by ACAS X show that neural networks giving either horizontal or vertical maneuvers can be proven safe. We explore how relaxing the bounds on aircraft dynamics can lead to potentially unsafe encounters and demonstrate how neural network controllers can be modified to guarantee safety through online costs or lowering alerting cost. The reachability method is flexible and can incorporate uncertainties such as pilot delay and sensor error. These results suggest a method for certifying neural network collision avoidance systems for use in real aircraft.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.