Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems (1912.07084v2)

Published 15 Dec 2019 in eess.SY and cs.SY

Abstract: The decision logic for the ACAS X family of aircraft collision avoidance systems is represented as a large numeric table. Due to storage constraints of certified avionics hardware, neural networks have been suggested as a way to significantly compress the data while still preserving performance in terms of safety. However, neural networks are complex continuous functions with outputs that are difficult to predict. Because simulations evaluate only a finite number of encounters, simulations are not sufficient to guarantee that the neural network will perform correctly in all possible situations. We propose a method to provide safety guarantees when using a neural network collision avoidance system. The neural network outputs are bounded using neural network verification tools like Reluplex and Reluval, and a reachability method determines all possible ways aircraft encounters will resolve using neural network advisories and assuming bounded aircraft dynamics. Experiments with systems inspired by ACAS X show that neural networks giving either horizontal or vertical maneuvers can be proven safe. We explore how relaxing the bounds on aircraft dynamics can lead to potentially unsafe encounters and demonstrate how neural network controllers can be modified to guarantee safety through online costs or lowering alerting cost. The reachability method is flexible and can incorporate uncertainties such as pilot delay and sensor error. These results suggest a method for certifying neural network collision avoidance systems for use in real aircraft.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.