Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Boosted optimal weighted least-squares (1912.07075v2)

Published 15 Dec 2019 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: This paper is concerned with the approximation of a function $u$ in a given approximation space $V_m$ of dimension $m$ from evaluations of the function at $n$ suitably chosen points. The aim is to construct an approximation of $u$ in $V_m$ which yields an error close to the best approximation error in $V_m$ and using as few evaluations as possible. Classical least-squares regression, which defines a projection in $V_m$ from $n$ random points, usually requires a large $n$ to guarantee a stable approximation and an error close to the best approximation error. This is a major drawback for applications where $u$ is expensive to evaluate. One remedy is to use a weighted least squares projection using $n$ samples drawn from a properly selected distribution. In this paper, we introduce a boosted weighted least-squares method which allows to ensure almost surely the stability of the weighted least squares projection with a sample size close to the interpolation regime $n=m$. It consists in sampling according to a measure associated with the optimization of a stability criterion over a collection of independent $n$-samples, and resampling according to this measure until a stability condition is satisfied. A greedy method is then proposed to remove points from the obtained sample. Quasi-optimality properties are obtained for the weighted least-squares projection, with or without the greedy procedure. The proposed method is validated on numerical examples and compared to state-of-the-art interpolation and weighted least squares methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.