Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems (1912.06933v1)

Published 14 Dec 2019 in cs.IR and cs.SI

Abstract: Popularity-based approaches are widely adopted in music recommendation systems, both in industry and research. However, as the popularity distribution of music items typically is a long-tail distribution, popularity-based approaches to music recommendation fall short in satisfying listeners that have specialized music. The contribution of this article is three-fold. We provide several quantitative measures describing the proximity of a user's music preference to the music mainstream. We define the measures at two levels: relating a listener's music preferences to the global music preferences of all users, or relating them to music preferences of the user's country. Moreover, we adopt a distribution-based and a rank-based approach as means to decrease bias towards the head of the long-tail distribution. We analyze differences between countries in terms of their level of mainstreaminess, uncover both positive and negative outliers (substantially higher and lower country-specific popularity, respectively, compared to the global mainstream), and investigate differences between countries in terms of listening preferences related to popular music artists. We use the standardized LFM-1b dataset, from which we analyze about 8 million listening events shared by about 53,000 users (from 47 countries) of the music streaming platform Last.fm. We show that there are substantial country-specific differences in listeners' music consumption behavior with respect to the most popular artists listened to. We conduct rating prediction experiments in which we tailor recommendations to a user's level of preference for the music mainstream using the proposed 6 mainstreaminess measures. Results suggest that, in terms of rating prediction accuracy, each of the presented mainstreaminess definitions has its merits.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.