Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems (1912.06933v1)

Published 14 Dec 2019 in cs.IR and cs.SI

Abstract: Popularity-based approaches are widely adopted in music recommendation systems, both in industry and research. However, as the popularity distribution of music items typically is a long-tail distribution, popularity-based approaches to music recommendation fall short in satisfying listeners that have specialized music. The contribution of this article is three-fold. We provide several quantitative measures describing the proximity of a user's music preference to the music mainstream. We define the measures at two levels: relating a listener's music preferences to the global music preferences of all users, or relating them to music preferences of the user's country. Moreover, we adopt a distribution-based and a rank-based approach as means to decrease bias towards the head of the long-tail distribution. We analyze differences between countries in terms of their level of mainstreaminess, uncover both positive and negative outliers (substantially higher and lower country-specific popularity, respectively, compared to the global mainstream), and investigate differences between countries in terms of listening preferences related to popular music artists. We use the standardized LFM-1b dataset, from which we analyze about 8 million listening events shared by about 53,000 users (from 47 countries) of the music streaming platform Last.fm. We show that there are substantial country-specific differences in listeners' music consumption behavior with respect to the most popular artists listened to. We conduct rating prediction experiments in which we tailor recommendations to a user's level of preference for the music mainstream using the proposed 6 mainstreaminess measures. Results suggest that, in terms of rating prediction accuracy, each of the presented mainstreaminess definitions has its merits.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.