Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Attending Form and Context to Generate Specialized Out-of-VocabularyWords Representations (1912.06876v1)

Published 14 Dec 2019 in cs.LG and stat.ML

Abstract: We propose a new contextual-compositional neural network layer that handles out-of-vocabulary (OOV) words in NLP tagging tasks. This layer consists of a model that attends to both the character sequence and the context in which the OOV words appear. We show that our model learns to generate task-specific \textit{and} sentence-dependent OOV word representations without the need for pre-training on an embedding table, unlike previous attempts. We insert our layer in the state-of-the-art tagging model of \citet{plank2016multilingual} and thoroughly evaluate its contribution on 23 different languages on the task of jointly tagging part-of-speech and morphosyntactic attributes. Our OOV handling method successfully improves performances of this model on every language but one to achieve a new state-of-the-art on the Universal Dependencies Dataset 1.4.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.