Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Online Reinforcement Learning Control using State-Space Dimensionality Reduction (1912.06514v2)

Published 13 Dec 2019 in eess.SY and cs.SY

Abstract: In this paper, we propose a fast reinforcement learning (RL) control algorithm that enables online control of large-scale networked dynamic systems. RL is an effective way of designing model-free linear quadratic regulator (LQR) controllers for linear time-invariant (LTI) networks with unknown state-space models. However, when the network size is large, conventional RL can result in unacceptably long learning times. The proposed approach is to construct a compressed state vector by projecting the measured state through a projective matrix. This matrix is constructed from online measurements of the states in a way that it captures the dominant controllable subspace of the open-loop network model. Next, a RL-controller is learned using the reduced-dimensional state instead of the original state such that the resultant cost is close to the optimal LQR cost. Numerical benefits as well as the cyber-physical implementation benefits of the approach are verified using illustrative examples including an example of wide-area control of the IEEE 68-bus benchmark power system.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.