Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Queueing Analysis of GPU-Based Inference Servers with Dynamic Batching: A Closed-Form Characterization (1912.06322v3)

Published 13 Dec 2019 in cs.PF and cs.LG

Abstract: GPU-accelerated computing is a key technology to realize high-speed inference servers using deep neural networks (DNNs). An important characteristic of GPU-based inference is that the computational efficiency, in terms of the processing speed and energy consumption, drastically increases by processing multiple jobs together in a batch. In this paper, we formulate GPU-based inference servers as a batch service queueing model with batch-size dependent processing times. We first show that the energy efficiency of the server monotonically increases with the arrival rate of inference jobs, which suggests that it is energy-efficient to operate the inference server under a utilization level as high as possible within a latency requirement of inference jobs. We then derive a closed-form upper bound for the mean latency, which provides a simple characterization of the latency performance. Through simulation and numerical experiments, we show that the exact value of the mean latency is well approximated by this upper bound. We further compare this upper bound with the latency curve measured in real implementation of GPU-based inference servers and we show that the real performance curve is well explained by the derived simple formula.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)