Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Disentangled Representations for Human Retargeting by Multi-view Learning (1912.06265v1)

Published 12 Dec 2019 in cs.CV

Abstract: We study the problem of learning disentangled representations for data across multiple domains and its applications in human retargeting. Our goal is to map an input image to an identity-invariant latent representation that captures intrinsic factors such as expressions and poses. To this end, we present a novel multi-view learning approach that leverages various data sources such as images, keypoints, and poses. Our model consists of multiple id-conditioned VAEs for different views of the data. During training, we encourage the latent embeddings to be consistent across these views. Our observation is that auxiliary data like keypoints and poses contain critical, id-agnostic semantic information, and it is easier to train a disentangling CVAE on these simpler views to separate such semantics from other id-specific attributes. We show that training multi-view CVAEs and encourage latent-consistency guides the image encoding to preserve the semantics of expressions and poses, leading to improved disentangled representations and better human retargeting results.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.