Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Extracting clinical concepts from user queries (1912.06262v2)

Published 12 Dec 2019 in cs.IR, cs.CL, and cs.LG

Abstract: Clinical concept extraction often begins with clinical Named Entity Recognition (NER). Often trained on annotated clinical notes, clinical NER models tend to struggle with tagging clinical entities in user queries because of the structural differences between clinical notes and user queries. User queries, unlike clinical notes, are often ungrammatical and incoherent. In many cases, user queries are compounded of multiple clinical entities, without comma or conjunction words separating them. By using as dataset a mixture of annotated clinical notes and synthesized user queries, we adapt a clinical NER model based on the BiLSTM-CRF architecture for tagging clinical entities in user queries. Our contribution are the following: 1) We found that when trained on a mixture of synthesized user queries and clinical notes, the NER model performs better on both user queries and clinical notes. 2) We provide an end-to-end and easy-to-implement framework for clinical concept extraction from user queries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)