Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Improving Interpretability of Word Embeddings by Generating Definition and Usage (1912.05898v2)

Published 12 Dec 2019 in cs.CL

Abstract: Word embeddings are substantially successful in capturing semantic relations among words. However, these lexical semantics are difficult to be interpreted. Definition modeling provides a more intuitive way to evaluate embeddings by utilizing them to generate natural language definitions of corresponding words. This task is of great significance for practical application and in-depth understanding of word representations. We propose a novel framework for definition modeling, which can generate reasonable and understandable context-dependent definitions. Moreover, we introduce usage modeling and study whether it is possible to utilize embeddings to generate example sentences of words. These ways are a more direct and explicit expression of embedding's semantics for better interpretability. We extend the single task model to multi-task setting and investigate several joint multi-task models to combine usage modeling and definition modeling together. Experimental results on existing Oxford dataset and a new collected Oxford-2019 dataset show that our single-task model achieves the state-of-the-art result in definition modeling and the multi-task learning methods are helpful for two tasks to improve the performance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.