Emergent Mind

Mean-Field Neural ODEs via Relaxed Optimal Control

(1912.05475)
Published Dec 11, 2019 in math.PR , math.OC , and stat.ML

Abstract

We develop a framework for the analysis of deep neural networks and neural ODE models that are trained with stochastic gradient algorithms. We do that by identifying the connections between control theory, deep learning and theory of statistical sampling. We derive Pontryagin's optimality principle and study the corresponding gradient flow in the form of Mean-Field Langevin dynamics (MFLD) for solving relaxed data-driven control problems. Subsequently, we study uniform-in-time propagation of chaos of time-discretised MFLD. We derive explicit convergence rate in terms of the learning rate, the number of particles/model parameters and the number of iterations of the gradient algorithm. In addition, we study the error arising when using a finite training data set and thus provide quantitive bounds on the generalisation error. Crucially, the obtained rates are dimension-independent. This is possible by exploiting the regularity of the model with respect to the measure over the parameter space.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.