Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Learning Agent Communication under Limited Bandwidth by Message Pruning (1912.05304v1)

Published 3 Dec 2019 in cs.AI, cs.LG, and cs.MA

Abstract: Communication is a crucial factor for the big multi-agent world to stay organized and productive. Recently, Deep Reinforcement Learning (DRL) has been applied to learn the communication strategy and the control policy for multiple agents. However, the practical \emph{\textbf{limited bandwidth}} in multi-agent communication has been largely ignored by the existing DRL methods. Specifically, many methods keep sending messages incessantly, which consumes too much bandwidth. As a result, they are inapplicable to multi-agent systems with limited bandwidth. To handle this problem, we propose a gating mechanism to adaptively prune less beneficial messages. We evaluate the gating mechanism on several tasks. Experiments demonstrate that it can prune a lot of messages with little impact on performance. In fact, the performance may be greatly improved by pruning redundant messages. Moreover, the proposed gating mechanism is applicable to several previous methods, equipping them the ability to address bandwidth restricted settings.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.