Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sparse Joint Transmission for Cell-Free Massive MIMO: A Sparse PCA Approach (1912.05231v2)

Published 11 Dec 2019 in eess.SP, cs.IT, and math.IT

Abstract: Cell-free massive multiple-input multiple-output (MIMO) is a promising cellular network. In this network, a large number of distributed and multi-antenna access points (APs) jointly serve many single antenna users using the same time-frequency resource. Consequently, it possibly provides a uniform service experience to users regardless of the users' locations by eliminating interference at cell boundaries via user-centric joint transmission. This joint transmission, however, requires extremely high signaling overheads for data sharing via backhaul links and causes a high network-wide power consumption. To resolve these problems, in this paper, we present a novel joint transmission method, which is referred to as sparse joint transmission (sparse-JT), for cell-free massive MIMO networks with finite backhaul capacity constraints. Sparse-JT jointly identifies the user-centric cooperative APs sets, precoding vectors for beamforming and compression, and power allocation that maximizes a lower bound of the sum-spectral efficiency under the constraint that a total number of active APs per the joint transmission is sparse. The proposed algorithm guarantees to identify a local-optimal solution for a relaxed sum-spectral maximization problem. By simulations, we show that sparse-JT achieves higher ergodic spectral efficiencies than those attained by multi-cell zero-forcing precoding with the user-centric AP clustering algorithm in all system configurations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube