Papers
Topics
Authors
Recent
2000 character limit reached

Energy-aware Scheduling of Jobs in Heterogeneous Cluster Systems Using Deep Reinforcement Learning (1912.05160v1)

Published 11 Dec 2019 in cs.DC and cs.LG

Abstract: Energy consumption is one of the most critical concerns in designing computing devices, ranging from portable embedded systems to computer cluster systems. Furthermore, in the past decade, cluster systems have increasingly risen as popular platforms to run computing-intensive real-time applications in which the performance is of great importance. However, due to different characteristics of real-time workloads, developing general job scheduling solutions that efficiently address both energy consumption and performance in real-time cluster systems is a challenging problem. In this paper, inspired by recent advances in applying deep reinforcement learning for resource management problems, we present the Deep-EAS scheduler that learns efficient energy-aware scheduling strategies for workloads with different characteristics without initially knowing anything about the scheduling task at hand. Results show that Deep-EAS converges quickly, and performs better compared to standard manually-tuned heuristics, especially in heavy load conditions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.