Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Learning from Noisy Anchors for One-stage Object Detection (1912.05086v2)

Published 11 Dec 2019 in cs.CV

Abstract: State-of-the-art object detectors rely on regressing and classifying an extensive list of possible anchors, which are divided into positive and negative samples based on their intersection-over-union (IoU) with corresponding groundtruth objects. Such a harsh split conditioned on IoU results in binary labels that are potentially noisy and challenging for training. In this paper, we propose to mitigate noise incurred by imperfect label assignment such that the contributions of anchors are dynamically determined by a carefully constructed cleanliness score associated with each anchor. Exploring outputs from both regression and classification branches, the cleanliness scores, estimated without incurring any additional computational overhead, are used not only as soft labels to supervise the training of the classification branch but also sample re-weighting factors for improved localization and classification accuracy. We conduct extensive experiments on COCO, and demonstrate, among other things, the proposed approach steadily improves RetinaNet by ~2% with various backbones.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.