Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Domain Adaptive Features with Unlabeled Domain Bridges (1912.05004v1)

Published 10 Dec 2019 in cs.CV

Abstract: Conventional cross-domain image-to-image translation or unsupervised domain adaptation methods assume that the source domain and target domain are closely related. This neglects a practical scenario where the domain discrepancy between the source and target is excessively large. In this paper, we propose a novel approach to learn domain adaptive features between the largely-gapped source and target domains with unlabeled domain bridges. Firstly, we introduce the framework of Cycle-consistency Flow Generative Adversarial Networks (CFGAN) that utilizes domain bridges to perform image-to-image translation between two distantly distributed domains. Secondly, we propose the Prototypical Adversarial Domain Adaptation (PADA) model which utilizes unlabeled bridge domains to align feature distribution between source and target with a large discrepancy. Extensive quantitative and qualitative experiments are conducted to demonstrate the effectiveness of our proposed models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.