Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Magnitude and Uncertainty Pruning Criterion for Neural Networks (1912.04845v1)

Published 10 Dec 2019 in cs.LG and stat.ML

Abstract: Neural networks have achieved dramatic improvements in recent years and depict the state-of-the-art methods for many real-world tasks nowadays. One drawback is, however, that many of these models are overparameterized, which makes them both computationally and memory intensive. Furthermore, overparameterization can also lead to undesired overfitting side-effects. Inspired by recently proposed magnitude-based pruning schemes and the Wald test from the field of statistics, we introduce a novel magnitude and uncertainty (M&U) pruning criterion that helps to lessen such shortcomings. One important advantage of our M&U pruning criterion is that it is scale-invariant, a phenomenon that the magnitude-based pruning criterion suffers from. In addition, we present a ``pseudo bootstrap'' scheme, which can efficiently estimate the uncertainty of the weights by using their update information during training. Our experimental evaluation, which is based on various neural network architectures and datasets, shows that our new criterion leads to more compressed models compared to models that are solely based on magnitude-based pruning criteria, with, at the same time, less loss in predictive power.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.