Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Magnitude and Uncertainty Pruning Criterion for Neural Networks (1912.04845v1)

Published 10 Dec 2019 in cs.LG and stat.ML

Abstract: Neural networks have achieved dramatic improvements in recent years and depict the state-of-the-art methods for many real-world tasks nowadays. One drawback is, however, that many of these models are overparameterized, which makes them both computationally and memory intensive. Furthermore, overparameterization can also lead to undesired overfitting side-effects. Inspired by recently proposed magnitude-based pruning schemes and the Wald test from the field of statistics, we introduce a novel magnitude and uncertainty (M&U) pruning criterion that helps to lessen such shortcomings. One important advantage of our M&U pruning criterion is that it is scale-invariant, a phenomenon that the magnitude-based pruning criterion suffers from. In addition, we present a ``pseudo bootstrap'' scheme, which can efficiently estimate the uncertainty of the weights by using their update information during training. Our experimental evaluation, which is based on various neural network architectures and datasets, shows that our new criterion leads to more compressed models compared to models that are solely based on magnitude-based pruning criteria, with, at the same time, less loss in predictive power.

Citations (2)

Summary

We haven't generated a summary for this paper yet.