Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sound Event Detection of Weakly Labelled Data with CNN-Transformer and Automatic Threshold Optimization (1912.04761v2)

Published 10 Dec 2019 in cs.SD and eess.AS

Abstract: Sound event detection (SED) is a task to detect sound events in an audio recording. One challenge of the SED task is that many datasets such as the Detection and Classification of Acoustic Scenes and Events (DCASE) datasets are weakly labelled. That is, there are only audio tags for each audio clip without the onset and offset times of sound events. \qk{We compare segment-wise and clip-wise training for SED that is lacking in previous works. We propose a convolutional neural network transformer (CNN-Transfomer) for audio tagging and SED, and show that CNN-Transformer performs similarly to a convolutional recurrent neural network (CRNN)}. Another challenge of SED is that thresholds are required for detecting sound events. Previous works set thresholds empirically, and are not an optimal approaches. To solve this problem, we propose an automatic threshold optimization method. The first stage is to optimize the system with respect to metrics that do not depend on thresholds, such as mean average precision (mAP). The second stage is to optimize the thresholds with respect to metrics that depends on those thresholds. Our proposed automatic threshold optimization system achieves a state-of-the-art audio tagging F1 of 0.646, outperforming that without threshold optimization of 0.629, and a sound event detection F1 of 0.584, outperforming that without threshold optimization of 0.564.

Citations (107)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.