Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Infinite families of $2$-designs from a class of non-binary Kasami cyclic codes (1912.04745v1)

Published 9 Dec 2019 in math.CO, cs.IT, and math.IT

Abstract: Combinatorial $t$-designs have been an important research subject for many years, as they have wide applications in coding theory, cryptography, communications and statistics. The interplay between coding theory and $t$-designs has been attracted a lot of attention for both directions. It is well known that a linear code over any finite field can be derived from the incidence matrix of a $t$-design, meanwhile, that the supports of all codewords with a fixed weight in a code also may hold a $t$-design. In this paper, by determining the weight distribution of a class of linear codes derived from non-binary Kasami cyclic codes, we obtain infinite families of $2$-designs from the supports of all codewords with a fixed weight in these codes, and calculate their parameters explicitly.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.