Papers
Topics
Authors
Recent
2000 character limit reached

MaskAAE: Latent space optimization for Adversarial Auto-Encoders (1912.04564v2)

Published 10 Dec 2019 in cs.CV and cs.LG

Abstract: The field of neural generative models is dominated by the highly successful Generative Adversarial Networks (GANs) despite their challenges, such as training instability and mode collapse. Auto-Encoders (AE) with regularized latent space provide an alternative framework for generative models, albeit their performance levels have not reached that of GANs. In this work, we hypothesise that the dimensionality of the AE model's latent space has a critical effect on the quality of generated data. Under the assumption that nature generates data by sampling from a "true" generative latent space followed by a deterministic function, we show that the optimal performance is obtained when the dimensionality of the latent space of the AE-model matches with that of the "true" generative latent space. Further, we propose an algorithm called the Mask Adversarial Auto-Encoder (MaskAAE), in which the dimensionality of the latent space of an adversarial auto encoder is brought closer to that of the "true" generative latent space, via a procedure to mask the spurious latent dimensions. We demonstrate through experiments on synthetic and several real-world datasets that the proposed formulation yields betterment in the generation quality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 6 likes about this paper.