Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

No-Trick (Treat) Kernel Adaptive Filtering using Deterministic Features (1912.04530v1)

Published 10 Dec 2019 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: Kernel methods form a powerful, versatile, and theoretically-grounded unifying framework to solve nonlinear problems in signal processing and machine learning. The standard approach relies on the kernel trick to perform pairwise evaluations of a kernel function, which leads to scalability issues for large datasets due to its linear and superlinear growth with respect to the training data. A popular approach to tackle this problem, known as random Fourier features (RFFs), samples from a distribution to obtain the data-independent basis of a higher finite-dimensional feature space, where its dot product approximates the kernel function. Recently, deterministic, rather than random construction has been shown to outperform RFFs, by approximating the kernel in the frequency domain using Gaussian quadrature. In this paper, we view the dot product of these explicit mappings not as an approximation, but as an equivalent positive-definite kernel that induces a new finite-dimensional reproducing kernel Hilbert space (RKHS). This opens the door to no-trick (NT) online kernel adaptive filtering (KAF) that is scalable and robust. Random features are prone to large variances in performance, especially for smaller dimensions. Here, we focus on deterministic feature-map construction based on polynomial-exact solutions and show their superiority over random constructions. Without loss of generality, we apply this approach to classical adaptive filtering algorithms and validate the methodology to show that deterministic features are faster to generate and outperform state-of-the-art kernel methods based on random Fourier features.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.