Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reducing Catastrophic Forgetting in Modular Neural Networks by Dynamic Information Balancing (1912.04508v1)

Published 10 Dec 2019 in cs.LG, cs.NE, and stat.ML

Abstract: Lifelong learning is a very important step toward realizing robust autonomous artificial agents. Neural networks are the main engine of deep learning, which is the current state-of-the-art technique in formulating adaptive artificial intelligent systems. However, neural networks suffer from catastrophic forgetting when stressed with the challenge of continual learning. We investigate how to exploit modular topology in neural networks in order to dynamically balance the information load between different modules by routing inputs based on the information content in each module so that information interference is minimized. Our dynamic information balancing (DIB) technique adapts a reinforcement learning technique to guide the routing of different inputs based on a reward signal derived from a measure of the information load in each module. Our empirical results show that DIB combined with elastic weight consolidation (EWC) regularization outperforms models with similar capacity and EWC regularization across different task formulations and datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.