Papers
Topics
Authors
Recent
2000 character limit reached

Efficient approximation of high-dimensional functions with neural networks (1912.04310v3)

Published 9 Dec 2019 in math.NA and cs.NA

Abstract: In this paper, we develop a framework for showing that neural networks can overcome the curse of dimensionality in different high-dimensional approximation problems. Our approach is based on the notion of a catalog network, which is a generalization of a standard neural network in which the nonlinear activation functions can vary from layer to layer as long as they are chosen from a predefined catalog of functions. As such, catalog networks constitute a rich family of continuous functions. We show that under appropriate conditions on the catalog, catalog networks can efficiently be approximated with rectified linear unit-type networks and provide precise estimates on the number of parameters needed for a given approximation accuracy. As special cases of the general results, we obtain different classes of functions that can be approximated with ReLU networks without the curse of dimensionality.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.